

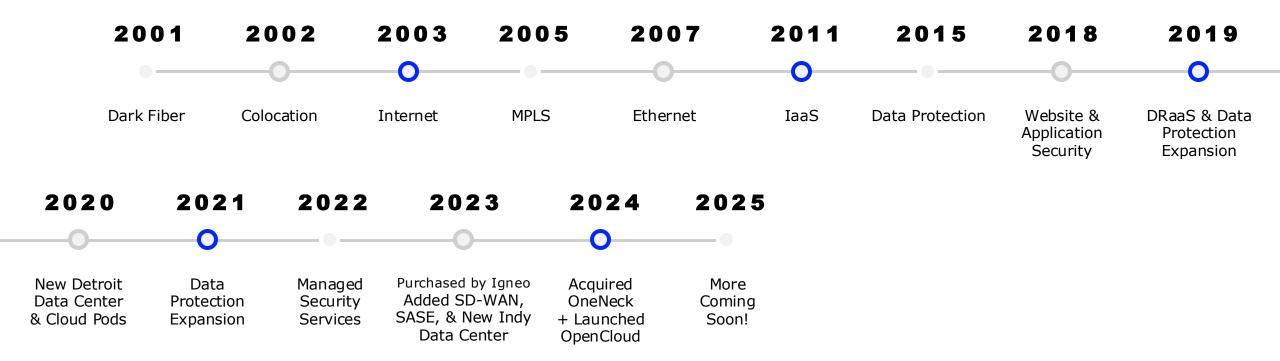
us signal ***opencloud**

Evaluating OpenCloud Against Other Hypervisors

Daven Winans

VP of Engineering & Innovation

- 15 years in the industry
- Managed Services
- Professional Services
- Circuit Design and Provisioning
- Technical Operations Center
- Cloud Engineering
- Monitoring Infrastructure
- Data Engineering
- Transport Engineering
- Innovation


about

- Data Center Services Provider
- Founded in 2001, based in Grand Rapids MI
- 16 National Data Centers
- Dedicated pre and post sales architectural support
- Technical Operations Center staffed by engineers 24/7/365
- Network-powered cloud and data protection solutions
- Largest fully deployed and privately owned network in the Midwest

company timeline

- 9,500 miles of Fiber Optics with future additions in the works
- Fully protected core, distribution and edge networks
- Private access to AWS, Azure, Google, IBM, Oracle, SAP, Salesforce

technology trends

VMWare

- VMWare has been the go-to virtualization platform for nearly 20 years in both the on-premise and cloud IaaS spaces
- Broadcom acquired VMWare in late 2023, and in 2024 instituted massive price increases
- At least 20% of current VMWare customers will look to transition to a new platform going into 2025*

Hyperscalers

- Hyperscalers have mastered consumption modes & excel at reach, scalability, and service integration
- Large scale repatriation from public cloud for better economics and Service level agreement


*Source: https://www.forrester.com/blogs/predictions-2024-technology-infrastructure/

by Broadcom

why create OpenCloud?

- We desired a solution that would deliver more predictability in pricing to our customers and to US Signal
- We wanted to deliver a true cloud experience instead of another virtualization option
- We wanted a consumption-based model in the market to give customers consider public cloud or repatriating from public cloud an option with the same "feel"

customer advisory board

Concerns:

• **Price** – OpenCloud is competitively priced and insulated

against the next VMWare price increase

- **Performance** OpenCloud is built on Dell R650 servers, Arista switching, & all flash Infinidat storage
- **Security** OpenCloud meets or exceeds USS standards
- **Compliance** OpenCloud is projected to be SOC2

type2, PCI-DSS, & HIPAA compliant

• SLA – OpenCloud includes a 100% SLA

Unconcerned with:

- Hardware
- Virtualization Platform

development process

Critera	VMV	/are (VCF)	Nutanix		KVM+CloudStack		
	Rating	Notes	Rating	Notes	Rating	Notes	
Functionality - Platform							
Base Hypervisor	N/A	ESXI	N/A	AHV / KVM	N/A	KVM	
		Utilizing Zerto Integration or		On their website they say we			
Ability to migrate VMs from disparate vCloud		Acronis BMR. OVA/OVF upload		can move VMs from ESXi to		vcenter, backup tested	
Environments into Hypervisor environment.	Meets Expectations	can be troublesome.	Meets Expectations	AHV. Need more info.	Meets Expectations	successfully	
Host High Availability	Meets Expectations	High Avaiability	Meets Expectations	N+1,2, RF2/3	Meets Expectations		
Automatic Cluster Balancing	Meets Expectations	DRS	Meets Expectations	Live Migration 5ms to 40ms	Meets Expectations	DRS	
Non-disruptive VM migration	Meets Expectations	vMotion			Meets Expectations		
						Claims that VDI support	
				Nutanix VDI (can do HCI VDI or		through XCp-ng but unclear if	
VDI Support	Meets Expectations	Horizon VDI	Meets Expectations	Horizon on ESXi as well)	Doesn't Meet Expectations	really works	
Storage Balancing (Non-HCI)							
		Flex/PayG/Reservation/Allocati				can set limits on resources	
Resource Allocation models for Mult-Tenancy	Meets Expectations	on			Meets Expectations	provisioned and allocated	
,	· · · · · · · · · · · · · · · · · · ·				-	cannot break availability zone	
Streched Cluster Model Support					Meets Expectations	barrier	
vTPM Guest Support		DI	Meets Expectations		•		
CPU Compatibility mode (Different CPU's in	1		•				
Clusters)	Meets Expectations	Vmware EVC	Doesn't Meet Expectations		Meets Expectations		
Storage Format		VMDK / RDM (RAW)	Meets Expectations	vmdk converted on upload	Meets Expectations	QCOW2	
				NCM/Prism/medium mgmt			
				overhead per host. See sizer		light mgmt overhead. seperat	
Hypervisor resource footprint			Meets Expectations	scenario	Exceeds Expecations	mgmt node(s)	
Min nodes in a cluster	Meets Expectations	Non-VSAN 1 VSAN =3	Meets Expectations	3	Meets Expectations	1	
Max nodes in a Cluster	Meets Expectations	64	Meets Expectations	32	Doesn't Meet Expectations	16	
Min VM size							
Max VM size							
Max VMs per host							
Max Operations		Configurable					
						management of upgrades no	
Nondisruptive Upgrades	Meets Expectations		Meets Expectations	Supported	Meets Expectations	the easiest	
Cluster Expansion Ability (More HCI related)							
vGPU Support		Supported		Supported			

evaluation process

Who are we evaluating against?

Google Cloud

	-		
	-	_	
		_	
	_	-	

mware[®]

by Broadcom

the toolset (hypervisor) – open source

Unixbench -

UnixBench is a benchmark suite that provides basic indicators of the performance of a Unix-like system. It runs multiple tests on a system and compares the scores from a baseline system to produce an index value, which is combined to make an overall index for the system

OpenSSL –

Used to test the performance of cryptographic algorithms.

Iperf -

IPerf is a tool for active measurements of maximum achievable bandwidth on IP networks.

Postgres/pgbench -

pgbench is a simple program for running benchmark tests on PostgreSQL. It runs the same sequence of SQL commands over and over, possibly in multiple concurrent database sessions, and then calculates the average transaction rate (transactions per second), as well as the average per-statement latency (execution time from the perspective of the client).

FIO -

FIO is a simple industry standard tool allowing for customizable IO testing. The power of FIO is simplicity and ability to tailor testing to specific workloads.

the toolset (hypervisor) – continued

UnixBench

Authors: Ben Smith, Rick Grehan, Tom Yager, Jon Tombs

Maintainers: David Niemi, Ian Smith, Anthony Voellm

FIO

Author: Jens Axboe

Maintainers: Jens Axboe & Vincent Fu

OpenSSL

Author: Mark Cox, Ralf Engelschall, Stephen Henson, Ben Laurie, Paul Sutton

Maintainers: The OpenSSL library project is managed co-equally by the Foundation and Corporation in conjuction with our various committees and communities. OpenSSL Software Foundation Inc Web: https://opensslfoundation.org

iperf

Author: Mark Gates, Alex Warshavsky Maintainers:

Maintainers The Energy Sciences Network (ESnet)

pgbench

Author: Tatsuo Ishii

Maintainers: Greg Smith, Josh Kupershmidt, Emeric tabakhoff

the toolset (public) – Cloud Mercato

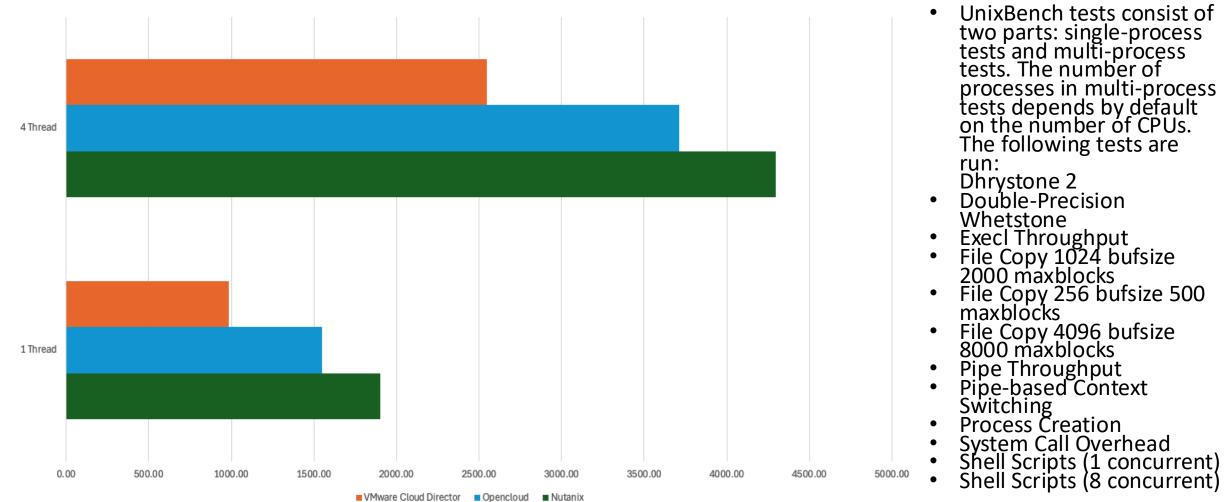
The Specification

In our quest for comprehensive cloud analysis, we've developed sophisticated methods to capture every crucial detail of virtual hardware. Our approach ensures that no aspect of the cloud infrastructure goes unexamined. Here's what we scrutinize: •CPU topology, caches, frequency and feature •Drives capacity •Accelerated hardware •Pricing

The Performance

Performance is at the heart of cloud computing, and our analysis digs deep into various aspects of cloud performance. We employ a range of benchmarks and tests to provide a complete picture of how cloud resources perform under different conditions: •Raw performance from CPU, RAM, network Advanced workload performance

The Testing


- Specs score (score from the catalog specifications)
- CPU\RAM testing
- Network bandwidth
- Network latency
- Price/Performance value from the results above

Performance Comparison - hypervisors

UnixBench - Compute

Unixbench CPU Benchmark

OpenSSL Speed

us signal

OpenSSL Hashes Per Second VMware Cloud Director Opencloud Nutanix 200000 400000 600000 800000 1000000 1200000

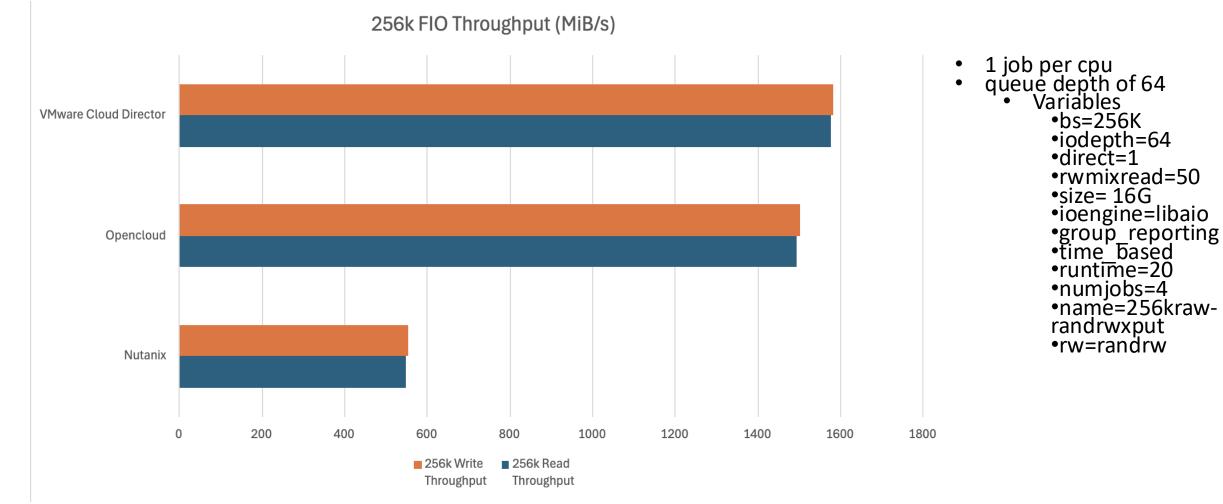
16384 Byte

8192 Byte 1024 Byte 256 Byte 64 Byte 16 Byte

OpenSSL speed is a lighweight opensource tool provided with the openssl commandline tool. It times the encryption/decryption through different algorithm and block size. Its output delivers a good picture of how much a system is able to perform with the different encryption systems available in the industry

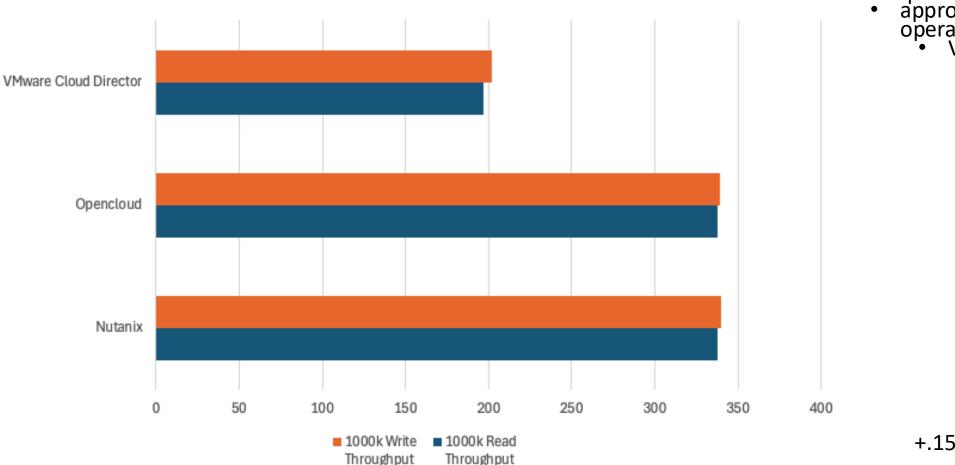
-8.2% Nutanix +20.2% Vmware

1400000


FIO - storage

The power of FIO is simplicity and ability to tailor testing to specific workloads.

Fio spawns a number of threads or processes doing a particular type of I/O action as specified by the user. fio takes a number of global parameters, each inherited by the thread unless otherwise parameters given to them overriding that setting is given. The typical use of fio is to write a job file matching the I/O load one wants to simulate.For our benchmarking we defined five workloads that are representative and include IOPS, Throughput & Latency.


256K block size Random R/W measuring Throughput

1000k FIO Throughput (MiB/s)

single job
 queue der

queue depth of 1
 approximation of a contiguous operation

 Variables

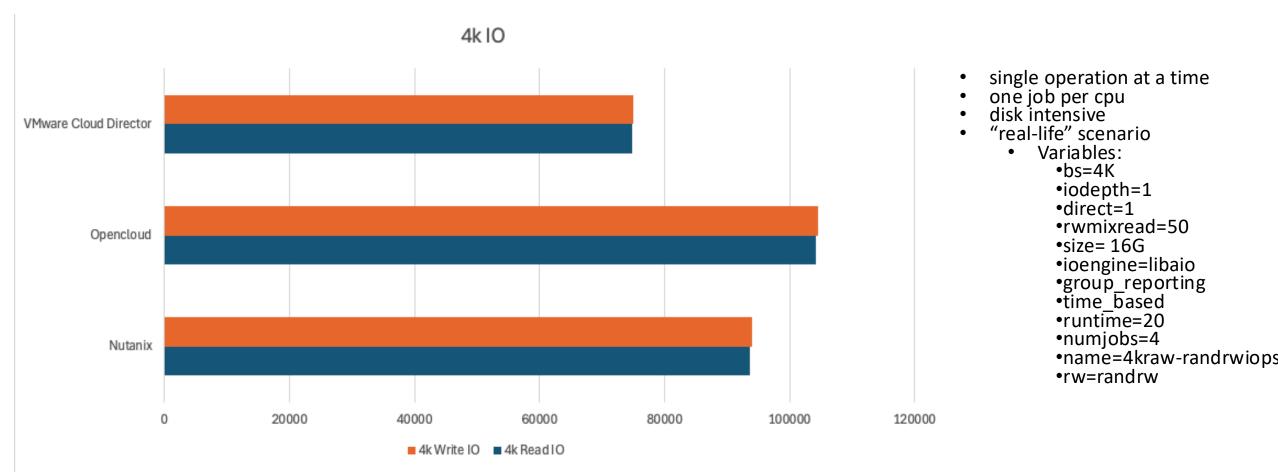
•rwmixread=50

•ioengine=libajo

•group reporting •time based

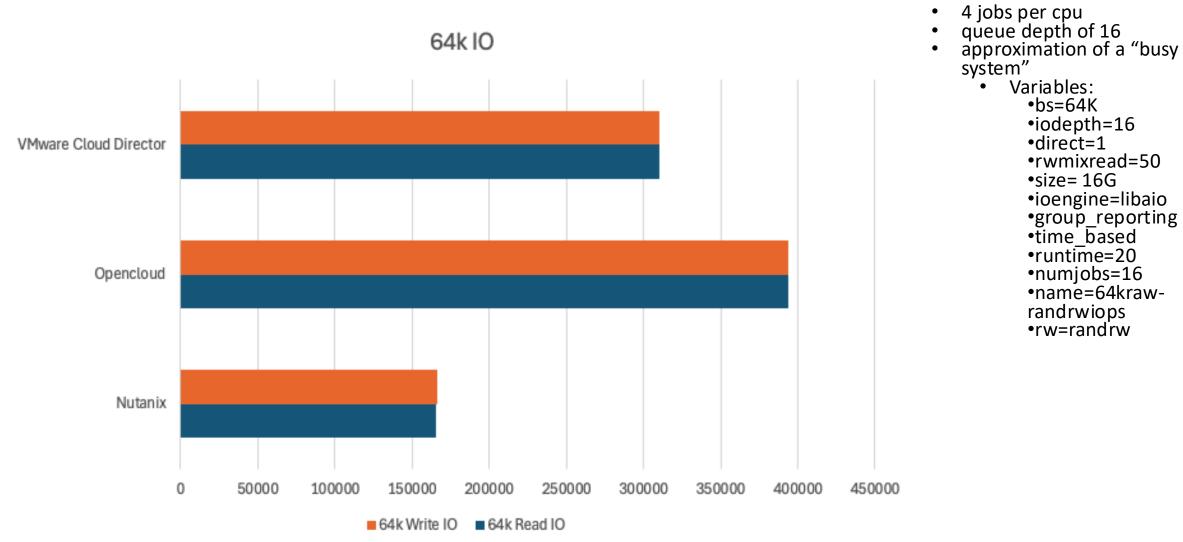
•bs=1000K

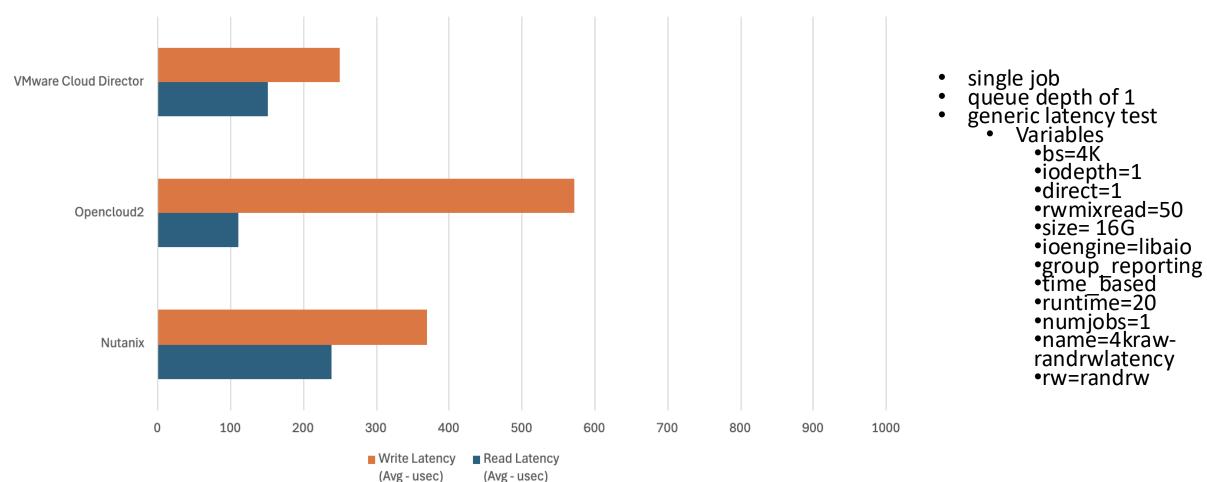
iodepth=1direct=1


•size= 256G

runtime=20
numjobs=1
name=1mraw-randrwxput
rw=randrw

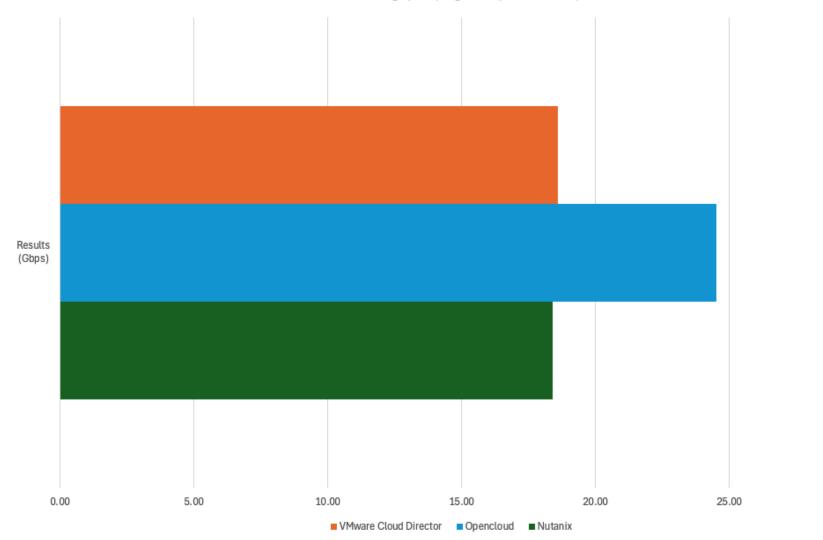
+.15% Nutanix +69% Vmware




us signa

64K block size random R/W measuring IO

4K block size R/W measuring latency



FIO Latency (usec)

iPerf - network

iPerf Throughput (Gigabits per second)

No complexity in this test, using anti-affinity rules we deploy our vm template on two different nodes & run the test with parameters to measure east-west

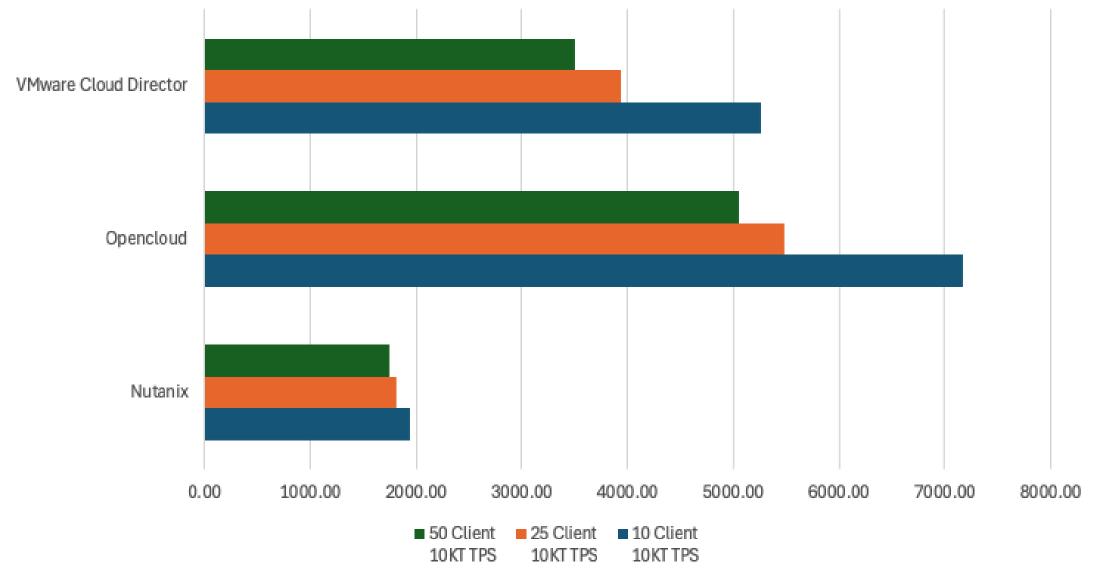
+33% Nutanix +32% Vmware

30.00

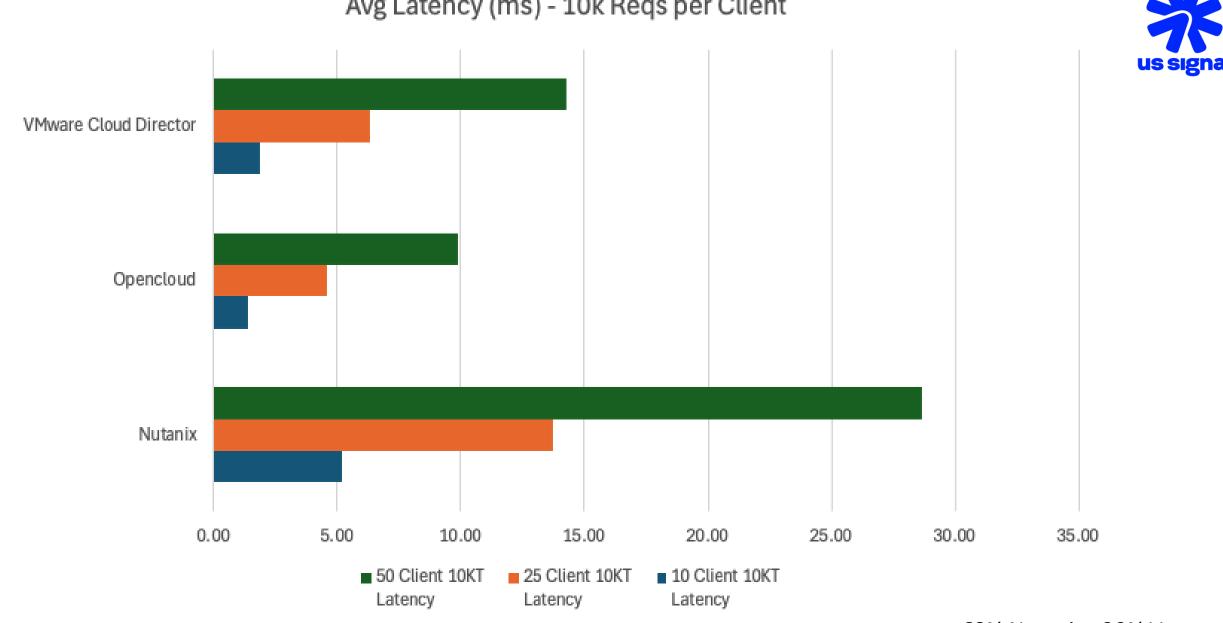
postgres/pgbench

By default, pgbench tests a scenario that is loosely based on TPC-B, involving five SELECT, UPDATE, and INSERT commands per transaction. However, it is easy to test other cases by writing your own transaction script files. When executing pgbench, some of the key variables are:

- -c = number of clients
- -j = number of threads
- -t = number of transactions each client runs


For our testing we executed the following scenarios:

- sudo -u postgres pgbench -c 10 -j 10 -t 10000 pgbench | tee /root/_pg-logs/10c-10t-10k.txt
- sudo -u postgres pgbench -c 25 -j 10 -t 10000 pgbench | tee /root/_pg-logs/25c-10t-10k.txt
- sudo -u postgres pgbench -c 50 -j 10 -t 10000 pgbench | tee /root/_pg-logs/50c-10t-10k.txt


These variables and parameters will specifically measure transactions per second and latency across a varying number of how many transactions each client is running.

Transactions Per Second (10k per Client)

+220% Nutanix +40% Vmware

Avg Latency (ms) - 10k Reqs per Client

+68% Nutanix +29% Vmware

performance Comparison - public cloud

Spec Score

0

		1	I	I		us signal
						us signai
cade L e	ake					

Amazon Web Services c71.2xlarge Amazon Web Services m7i.2xlarge Amazon Web Services r7i.2xlarge Amazon Web Services x2gd.2xlarge DigitalOcean C2 8VCPU 16GB INTEL DigitalOcean S 8VCPU 32GB DigitalOcean SO 8VCPU 64GB Google Cloud Custom N2 8 vCPU 16GB Intel Case Google Cloud n2-highmem-8 Intel Cascade Lake Google Cloud n2-standard-8 Intel Cascade Lake IBM Cloud bx2-8x32 IBM Cloud cx2-8x16 IBM Cloud mx2-8x64 Microsoft Azure Standard D81s v5 Microsoft Azure Standard D8s v5 Microsoft Azure Standard_E8s_v5 Rackspace 15 GB Compute v1 Rackspace 30GB Standard Instance US Signal 8 CPUs 128GB US Signal 8 CPUs 16GB US Signal 8 CPUs 32GB US Signal 8 CPUs 64GB 40 10 20 30 50 60 70 80 90 100 110 120 130 Score Higher is better

140

Geekbench 6 – general purpose

AWS m7i.2xlarge Azure Standard_D8s_v5 DigitalOcean \$ 8VCPU 32GB Google n2-standard-8 Intel Cascade Lake IBM bx2-8x32 Rackspace 30GB Standard Instance US Signal 8 CPUs 32GB 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 0 Single and Multi Score (transparent)

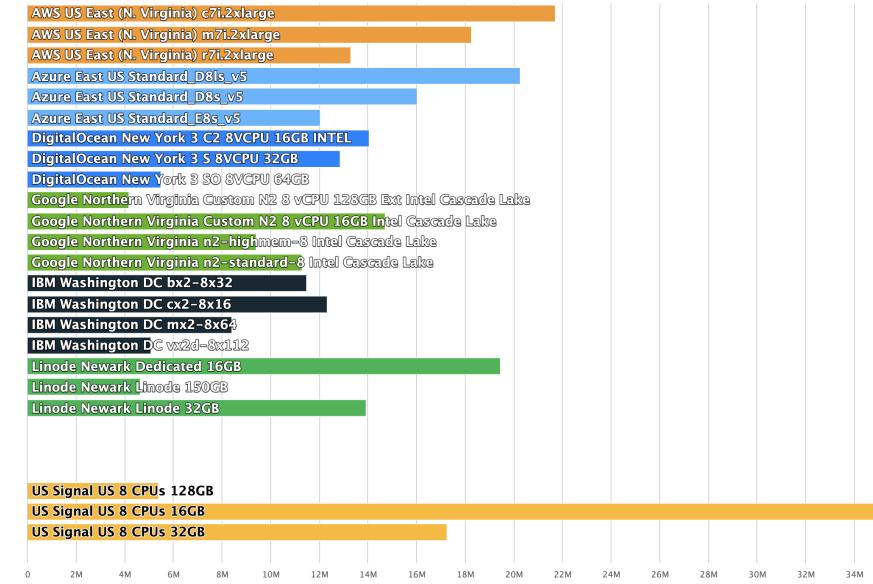
General Purpose

Higher is better

Geekbench 6 – compute optimized

Compute optimized

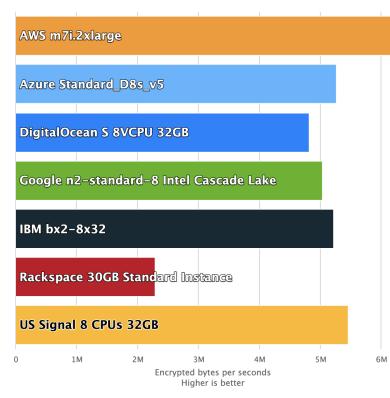
AWS c7i.2xlarge										
Azure Standard_D8ls_v5										
DigitalOcean C2 8VCPU 16GB INTEL										
Google Custom N2 8 vCPU 16GB Int	el Cascade Lake									
IBM cx2-8x16										
Rackspace 15 GB Compute v1										
US Signal 8 CPUs 16GB										
0 500 1000 1500 200		000 350 Single	and Multi Score (Higher is bett	transparent)	000 55	00 60	000 65	500 70	000 75	00 800

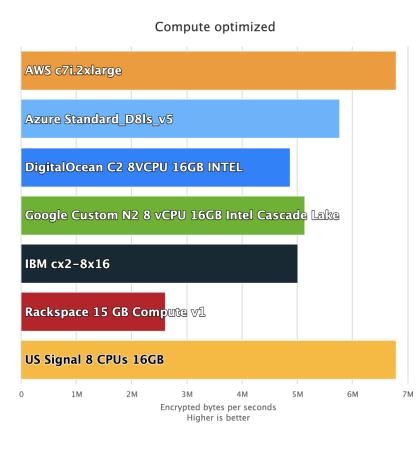

Geekbench 6 – memory optimized

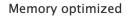
Memory optimized

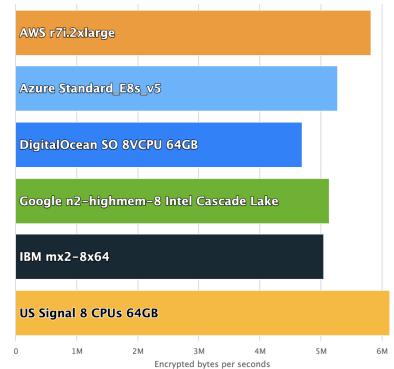
AWS r7i.2xlarge					
Azure Standard_E8s_v5					
DigitalOcean SO 8VCPU 64GB					
Google n2-highmem-8 Intel Cascade Lake	3				
IBM mx2-8x64					
US Signal 8 CPUs 64GB					
0 500 1000 1500 2000	2500 3000 Single a	3500 4000 and Multi Score (transpare Higher is better	4500 5000 ent)	5500 600	00 6500 700

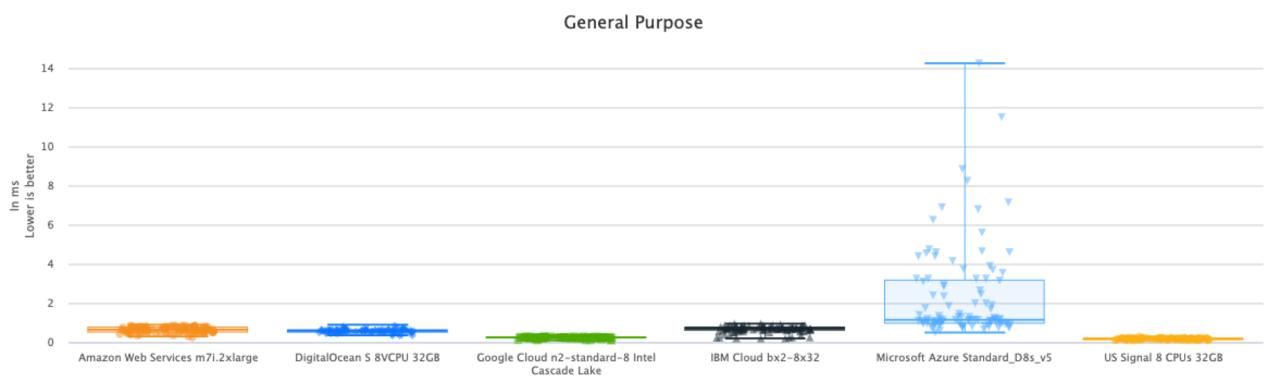
Geekbench 6 – price/performance



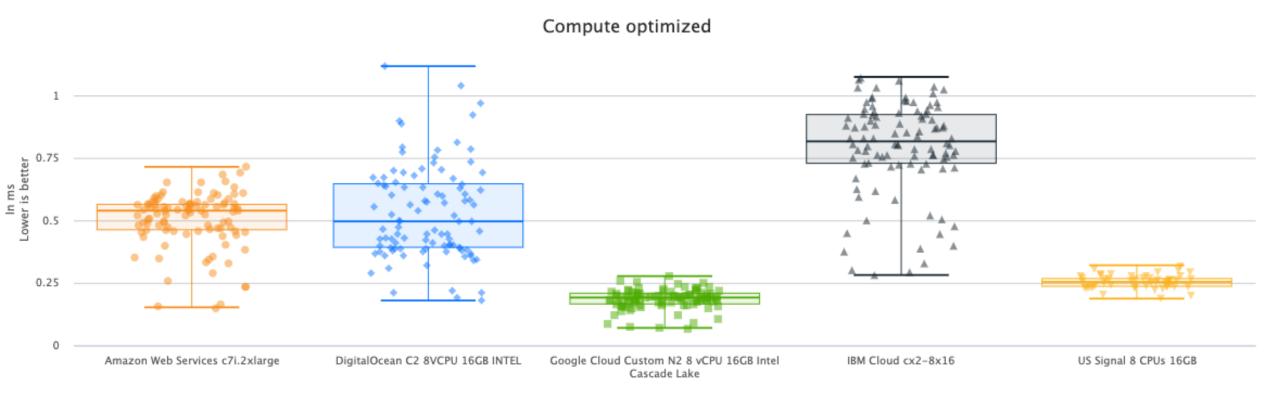

36M


OpenSSL Speed

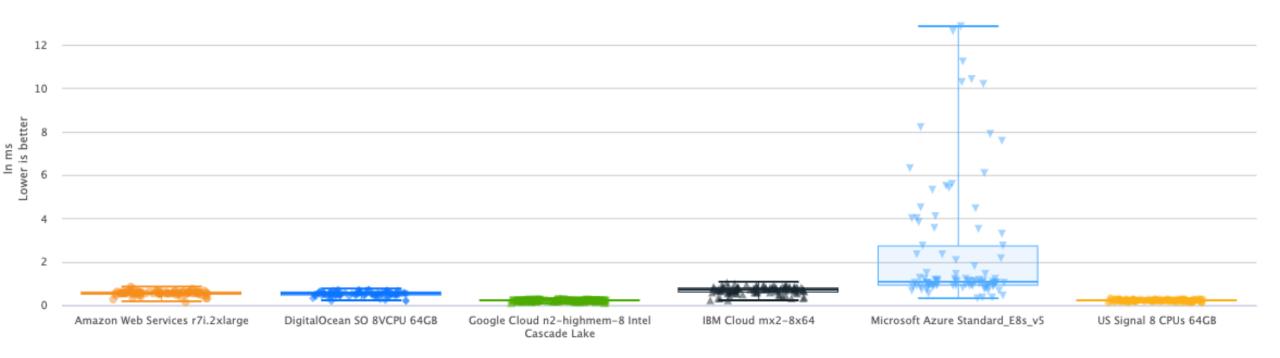

us signal



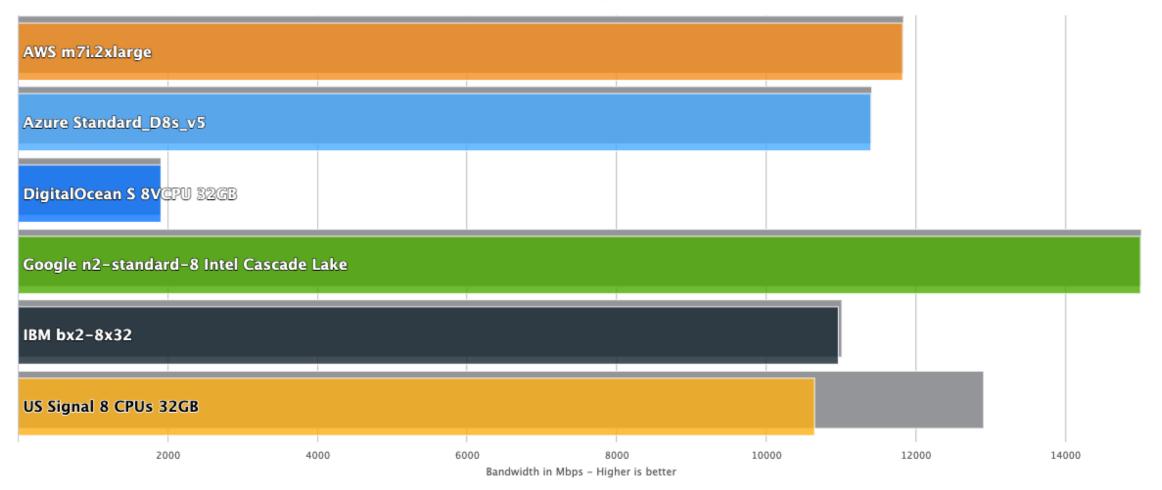
Higher is better


Network Latency – general purpose

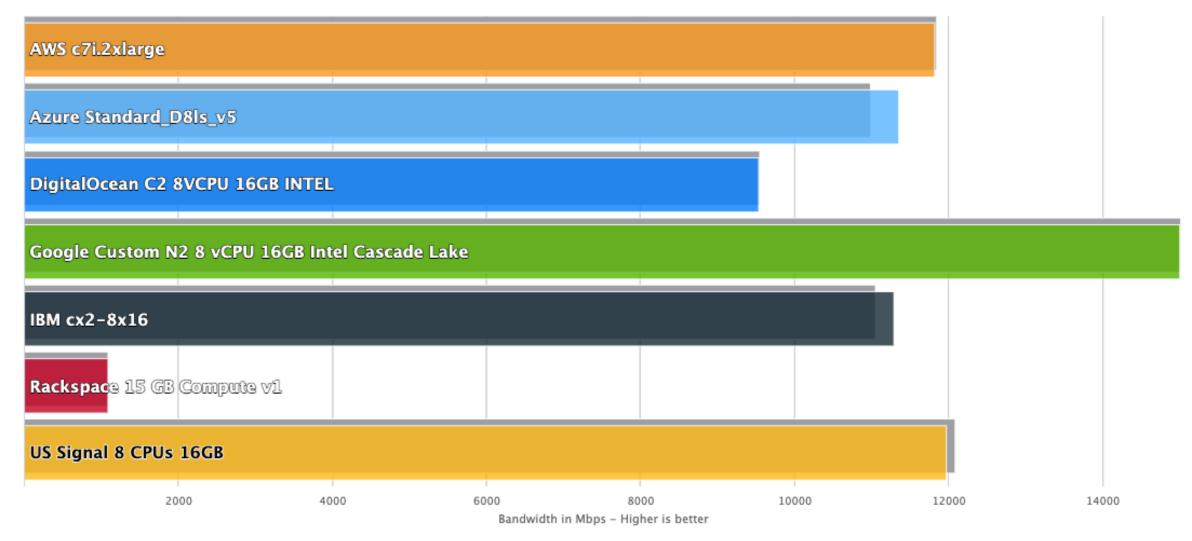
Network Latency – compute optimized



Network Latency – memory optimized


Memory optimized

Network Bandwidth - general



General Purpose

Network Bandwidth – compute optimized

Compute optimized

Network Bandwidth – memory optimized

Memory optimized

AWS r7i.2xlarge						
Azure Standard_E8s_v5						
DigitalOcean SO 8VCPU 64GB						
Google n2-highmem-8 Intel Case	ade Lake					
IBM mx2-8x64						
US Signal 8 CPUs 64GB						
2000	4000	6000 Bandwidth i	8000 n Mbps – Higher is better	10000	12000	14000

Amazon Web Services c7i.2xlarge GP3 16000 IOPS

DigitalOcean C2 8VCPU 16GB INTEL Block Storage

Google Cloud Custom N2 8 vCPU 16GB Intel Cascade Lake SSD Persistent Disk

IBM Cloud cx2-8x16 General Purpose

Linode Dedicated 16GB Block storage

Microsoft Azure Standard_D8ls_v5 No cache Premium LRS

US Signal 8 CPUs 16GB Block

Storage – price/performance

Amazon Web Services c7i.2xlarge GP3 16000 IOPS

DigitalOcean C2 8VCPU 16GB INTEL Block Storage

Google Cloud Custom N2 8 vCPU 16GB Intel Cascade Lake SSD Persistent Disk

IBM Cloud ox2-8x16 General Purpose

Linode Dedicated 16GB Block storage

Microsoft Azure Standard_D3ls_v5 No cache Premium LRS

US Signal 8 CPUs 16GB Block

readwrite

Price/Performance score Higher is better

conclusion

thank you!

Questions or Comments?

dwinans@ussignal.com Linkedin.com/in/davenwinans