
Scaling CloudStack
to 100K Hosts and Millions of Instances

Abhishek Kumar

Image from freepik.com



About ME
● Long-time CloudStack Committer and PMC

● Software engineer @ ShapeBlue

● Father to a delightful 8-month-old baby girl

● When I’m not working, you’ll find me tending 

to my ever-growing jungle of houseplants



HOw MANY HYPERVISOR HOSTS CLOUDSTACK CAN 
SUPPORT???

How many virtual machines, volumes and other resource?



CLOUDSTACK & 
SCALABILITY

● CloudStack is scalable

● Many users already running 

production environment with 

over 5K hypervisor hosts

● Alternative to hyperscalers

● Identify limits



SCALING THROUGH CELL MODEL
● Multiple CloudStack installations

● Each installation with 5-10k hosts 

will act as cell

Challenge

Inter-cell communication



SCALE SINGLE INSTALLATION
● Deploy a test environment

○ Simulator based 

environment

○ Connected agents such as 

KVM - How to access 

thousands of KVM hosts?

● How to identify issues, 

bottlenecks?

10x



● Database

● Concurrency 

Management

● Fault Tolerance

● Agent Communication

● Other issues

BottlenECKS 
FOunD

csbench



Database

● As the number of resources (e.g., VMs, networks) grow, 

the database becomes a primary bottleneck

● Centralized database

Use distributed database? A locking service?



DATABASE - contD…

● Old structure and usage, old 

code

● Inefficient usage - missing 

indexes, slow queries, 

repetitive queries

MySQL server itself isn’t the 
problem!
It can handle upwards of 50k 
queries per second



API HANDLING and Concurrency Management
● High API request volumes from many users

● Automation scripts and background tasks

Self-Healing and Fault Tolerance
● Area where CloudStack has not fared very well in the past

● Intermittent failures shouldn’t affect whole environment



Agent Communication Overhead
● Managing many thousands of agents communicating 

with the CloudStack management server

● Bottlenecks during management server rolling 

restarts

● Access thousands of hypervisor hosts to create 

such a large environment



Other ISSUES & 
CONSIDERATIONS

● Resource Allocation and 
Scheduling

● Periodic maintenance
● Tuning - underlying 

infrastructure, 
CloudStack features and 
functionalities

● Security at scale



IMPROVEMENTS



IMPROVEMENTS & CHANGES

● Exhaustive changes but focus on the persistence 

layer and infrastructure resources.

● Primary emphasis on refining KVM hypervisor 

integration.

● Targeted improvements in API and server layers for 

immediate gains.

● Benchmarking and profiling to identify bottlenecks 

and achieve peak resource utilization.



BEFORE

MAnagement SERVER HOST

● Heap size set to 10GB but memory isn’t scaling well
● Many threads in blocking state



AfTER

MAnagement SERVER HOST

● Memory is scaled better
● Blocking threads are minimal



HikariCP & DATABASE CHANGES
● Default connection pooling library changed from DBCP2 to 

more performant HikariCP, 

https://github.com/brettwooldridge/HikariCP

● Option to configure library using db.properties

● Added proper indexes

● Improved JAVA code at different places

https://github.com/brettwooldridge/HikariCP


Before After

Significant reduction in DB reads



AGENT-SERVER COMMUNICATION
● Better handling 

connections

● Concurrency in TLS/SSL 

handshakes

● Configuration 

flexibility

A new mock KVM agent 

plugin developed



…2 mock KVM AGENT PLUGINs
● JAVA based using existing agent code
● Go-based agent written from scratch



https://docs.google.com/file/d/1fqcfRlXHrLKcJjYYZruBLBtaUSijP6W8/preview


STORAGE COnnectionS
● Added concurrency and 

allow setting worker 

counts using new global 

config - 

storage.pool.host.connec

t.workers

● 50k hypervisor hosts 

present in the zone and 

set worker count to 2



More workers will not always result in more performance



Caching FRAMEWORK
● Not everything can be made faster on its 

own—sometimes we need caching to bridge the 

gap

● Caffeine in-memory caching library, 

https://github.com/ben-manes/caffeine

● Caching added for repeated retrievals:
○ Dynamic Config Keys

○ Account/User role API access

https://github.com/ben-manes/caffeine


After

BEFORE
● Config value 

retrievals down to 

1/4th

● 30% lesser average 

retrieval time



VM AND DEPLOYMENTS
● While deployment was 

not the focus but 

overall changes 

resulted in gains

● 50k hypervisor hosts 

present in the zone 

and VMs deployed 

with 50 workers



● Good part - lesser time after changes
● Bad part - linear increase



TUNING
● Identified configurations which can be tuned 

for optimal performance. These include:
○ Database configurations

○ Global settings

○ JVM tuning - moved to using G1GC instead of ParallelGC

○ OS-level changes#

● Environment recommendations which would allow 

better performance



CLUSTER-HOST BEHAVIOUR
● Performance becomes inversely proportional to number of hosts in a cluster
● # On putting 50k hosts in a single cluster only one VM got deployed



WORKER BEHAVIOR

● Test server was comfortable handling 50-100 workers



Work DOne - contD…
● 4.20.0

○ Move to more performant HikariCP database connection pooling library, 

https://github.com/apache/cloudstack/pull/9518

○ Introduced caching framework and dynamic config key caching using Caffeine 

library, https://github.com/apache/cloudstack/pull/9628

● 4.20.1#
○ Larger scaling work around caching usage, agent-server connection improvements, 

concurrency, optimisations. https://github.com/apache/cloudstack/pull/9840

○ list*Metrics API related UI improvement, 

https://github.com/apache/cloudstack/pull/9825

○ Management server maintenance, https://github.com/apache/cloudstack/pull/9854

○ And more…

https://github.com/apache/cloudstack/pull/9518
https://github.com/apache/cloudstack/pull/9628
https://github.com/apache/cloudstack/pull/9840
https://github.com/apache/cloudstack/pull/9825
https://github.com/apache/cloudstack/pull/9854


FUTURE WORK



FUTURE WORK
● Extend optimization efforts to domains, accounts, VMs, volumes and 

other resources

● Optimize the allocation and deployment logic

● Develop comprehensive guidelines for architecting and tuning 

CloudStack environments

● Enhance the efficiency of background tasks

● Incorporating modern design patterns and re-engineering legacy 

modules



HOw MANY HYPERVISOR HOSTS CLOUDSTACK CAN SUPPORT???
How many virtual machines, volumes and other resource?

100k hosts
1m VMs

And similarly 
other resources



Q & A

Thank you!


